PTA (Plasma Transferred Arc)

A soldagem PTA é um processo que pode ser altamente automatizado. Utiliza uma combinação arco/jato de plasma para formar uma área de fusão limitada sobre a superfície da peça de trabalho. O resultado é uma baixa diluição do metal base com uma pequena zona afetada pelo calor e um revestimento denso e uniforme. Este processo encontrou uma grande utilidade em aplicações de grande volume e automatizadas, como a metalização de válvulas de escape. É possível obter taxas de deposição de até 12 kg/hora e a espessura do revestimento é de 1 a 6 mm.

Revestimento a laser (Laser Cladding)

Permite controlar o calor e a profundidade do revestimento, proporcionando uma limpa união metálica com uma diluição mínina, uma pequena zona afetada pelo calor e uma estrutura de grão fino. As taxas de deposição são de até 8 kg/hora, e a espessura do revestimento varia de 0,5 a mais de 4 mm.

Ligas Techno Alloys para PTA e Laser Cladding

Liga-Ni	μm	С	Si	В	Fe	Cr	Ni	Мо	Outros	Dureza	Aplicação
1535-30	53-150	0,25	3,0	1,0	2,4	5,6	Bal.	-	Al=1,0	32*	Para revestimento em ferro fundido e bronze.
1540-00	53-150	0,25	3,5	1,6	2,5	7,5	Bal.	_	-	40*	Para revestimento em ferro
1550-00	53-150	0,45	3,9	2,3	2,9	11,0	Bal.	_	-	52*	fundido e bronze, base níquel
1560-00	53-150	0,75	4,3	3,1	3,7	14,8	Bal.	-	-	62*	para soldagens de durezas medianas a duras, como válvulas de motor diesel e diversos tipos de juntas.
625	53-150	0,03	0,40	-	1,4	21,5	Bal.	9,0	Nb=3,8	200 HV	IN 625
C276-M	53-150	0,12	0,5	-	3,0	15,5	Bal.	16,0	W=4,5 Mn=1,2 V=0,5	210 HV	Hastelloy C-276
Liga-Co	μm	С	Si	Fe	Cr	Ni	Со	Мо	Outros	Dureza	Aplicação
TEC ALLOY 1 PTA	53-150	2,4	1,1	-	30,0	-	Bal.	-	W=12,5	56*	Base cobalto para resistência à corrosão e oxidação. Melhores valores de dureza à quente que os obtidos com base níquel.
TEC ALLOY 6	53-150	1,1	1,0	1,5	28,5	1,5	Bal.	-	W=4,4	41*	
TEC ALLOY 12 PTA	53-150	1,4	1,1	1,0	28,5	1,5	Bal.	-	W=8,0	44*	
TEC ALLOY 21 PTA	53-150	0,25	1,0	1,5	27,0	2,8	Bal.	5,5	-	31*	
HB400	53-150	0,05	2,8	0,5	9,7	0,5	Bal.	29,5	-	53*	
Liga-Fe	μm	С	Si	Fe	Cr	Ni	Мо	Mn	Outros	Dureza	Aplicação
3533-10	53-150	2,1	1,2	Bal.	28,0	11,5	5,5	1,0	-	42*	Boa resistência ao desgaste por abrasão.
316L PTA	53-150	0,03	0,8	Bal.	17,0	12,0	2,5	1,5	-	160 HV	Inox 316L
410 PTA	53-150	0,10	0,5	Bal.	12,5	-	-	0,1	-	340 HV	Inox 410
M2	53-150	1,0	0,3	Bal.	4,0	-	5,0	0,3	V=2,0 W=6,2	63*	Boa resistência ao desgaste por abrasão.

^{*}Dureza (HRC) Pode sofrer alteração em seu valor de acordo com a base e espessura da camada soldada.

IMPORTANTE: As informações contidas nesta separata não devem ser consideradas como garantia ou certificado pelo qual assumimos alguma responsabilidade legal. São oferecidas aos Clientes para consideração, investigação e verificação. Estas informações podem ser alteradas sem aviso prévio. ABRIL/2016 – REV. 1

